Closing the Gap between Stability and Schedulability: A New Task Model for Cyber-Physical Systems
نویسندگان
چکیده
A cyber-physical system (CPS) usually contains multiple control loops, each responsible for controlling different physical subprocesses, that run simultaneously upon a shared platform. The foremost design goal for CPSes is to guarantee system stability and control quality with limited cyber resources. We show, via an in-depth case study, that two inter-related design parameters — sampling period and consecutive control update misses — play a key role in determining stability and control performance. However, most CPS designs, such as control– schedule co-design and fault-tolerant scheduling, focus on either sampling period or control update misses alone, but not both. To remedy this problem, we propose a new CPS task model that captures both system stability and control performance in terms of sampling period and maximum allowable number of consecutive control update misses. To demonstrate the utility and power of this model, we develop two new scheduling mechanisms, offline parameter assignment and online state-aware scheduling. The former determines the sampling period and the maximum allowable number of consecutive job deadline misses for each task while preserving system stability. The latter then generates a schedule by exploiting the state of each physical subprocess to manage job deadline misses so as to improve the overall system performance without compromising system stability. Our in-depth evaluation results demonstrate that the proposed task model and the corresponding scheduling algorithm not only enable the efficient use of computing resource, but also significantly improve control performance without compromising system stability.
منابع مشابه
Physical-State-Aware Dynamic Slack Management for Mixed-Criticality Systems
Safety-critical cyber-physical systems like autonomous cars require not only different levels of assurance, but also close interactions with dynamically-changing physical environments. While the former has been studied extensively by exploiting the notion of mixed-criticality (MC) systems, the latter has not, especially in conjunction with MC systems. To fill this important gap, we conduct an i...
متن کاملDefinition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کاملUsing Timinig Paths to Validate End-to-end Requirements with Methods of Schedulability Simulation and Analysis
Requirements on end-to-end response times are essential for the correct behavior of complex cyber-physical systems. To ensure such requirements not only the start and end points like sensors and actuators are important but all functions and systems in between. For such requirements an adequate model is necessary to describe the flow of information involved in the requirements and allow to trace...
متن کاملDevelopment and use of a new task model for cyber-physical systems: A real-time scheduling perspective
In a typical cyber-physical system (CPS), the cyber/computation subsystem controls the physical subsystem, and therefore the computer society has recently paid considerable attention to CPS research. To keep such a CPS stable, feedback control with periodic computation tasks has been widely used, and its theoretical guarantee of stability has been made with periodic real-time task models that e...
متن کاملA Methodology for Unified Assessment of Physical and Geographical Dependencies of Wide Area Measurement Systems in Smart Grids
Wide Area Measurement Systems (WAMS) enable real time monitoring and control of smart grids by combining digital measurement devices, communication and control systems. As WAMS consist of various infrastructures, they imply complex dependencies among their underlying systems and components of different types, such as cyber, physical and geographical dependencies. Although several works exist in...
متن کامل